ELECTRONIC STRUCTURE OF PORPHYRINS WITH ELECTRONEGATIVE SUBSTITUENTS

V. M. Mamaev, G. V. Ponomarev, and R. P. Evstigneeva

Khimiya Geterotsiklicheskikh Soedinenii, Vol. 4, No. 6, pp. 1018-1024, 1968

UDC 547.749:541.67:543.422.6

Using the MO LCAO method in Hückel's approximation, the π -electronic charges and the bond orders of porphyrins containing ethoxycarbonyl and methyl substituents in the β -positions have been calculated. A correlation has been observed between the frequencies of stretching vibrations of the C==O groups in the IR spectra and the orders of their bonds. Changes in the chemical shifts of the protons of the methyl groups with the introduction of ethoxycarbonyl substituents agree with the changes in the π -electron charges.

Continuing earlier investigations on the influence of electronegative substituents on the physicochemical properties of the porphyrins [1, 2], in the present paper using the MO LCAO method in Hückel's approximation, we have calculated the π -electron charges and the bond orders for the following porphyrins: 1,4, 5,8-tetramethylporphyrin (I), 2-ethoxycarbonyl-1,4,5, 8-tetramethylporphyrin (II), 2, 3-diethoxycarbonyl-1,4,5,8-tetramethylporphyrin (IIIa), 2,6-diethoxycarbonyl-1, 4, 5, 8-tetramethylporphyrin (IIIb), 2, 7diethoxycarbonyl-1, 4, 5, 8-tetramethylporphyrin (IIIc), 2, 3, 6-triethoxycarbonyl-1, 4, 5, 8-tetramethylporphyrin (IV), and 2, 3, 6, 7-tetraethoxycarbonyl-1, 4, 5, 8, tetramethylporphyrin (V). The results of the calculations are used to discuss the IR frequencies of the vibrations of the C=O groups and also the NMR spectra.

METHOD OF CALCULATION

In the MO LCAO method in Hückel's approximation, the π -electron charge on an atom r is given by the expression: $q_r = \sum_i c_{ir}^2 n_i$, where c_{ir} are the coefficients of the molecular orbitals, n_i is the number of electrons in the i-th molecular orbital; and the bond order $p_{rs} =$ $= \sum c_{ir} c_{is} n_i$.

As in the preceding papers [1, 2], we used a set of semiempirical parameters [3]. The resonance integral for the bond between the ethoxycarbonyl group and the porphyrin ring was chosen in such a way as to ensure a linear relationship between the experimental and the calculated energies of the $\pi-\pi$ transitions [1, 2].

The results of the calculations of the electron densities are given in Tables 1-4. The system of numbering the atoms is given in the following scheme:

INFRARED SPECTRA

Coulson and Longuet-Higgins [4] have established that the frequency of the stretching vibrations of the bond rs is determined by the force constant

$$K_{rs} = \xi p_{rs} + \sigma (1 - p_{rs}) + \left[\frac{\xi \sigma (s - d)}{\xi \rho_{rs} + \sigma (1 - p_{rs})} \right]^2 - \frac{\pi_{rs, rs}}{2}$$

where $\pi_{rs,rs}$ is the self-polarizability and p_{rs} is the order of the bond rs, ξ and σ are the force constants of double and single bonds, and d and s are the lengths of these bonds. For the C=O bond, the self-polarizability is found to have a very small influence [5] and therefore we may take $k_{rs} = \xi p_{rs} + \sigma(1 - p_{rs})$.

Since a good correlation has been observed by a number of investigators [5–7] between the frequencies of the stretching vibrations of the carbonyl groups of various unsaturated compounds and the orders of their bonds, it was natural to expect a similar correlation in the case of the porphyrins. Table 5 gives a comparison of the experimental frequencies of the stretching vibrations of the C=O groups with the orders of the C=O bonds for compounds II–V. The IR spectra were taken in KBr tablets on a UR-10 spectrometer.

In a consideration of the IR frequencies of the porphyrins II - V, they could have been expected to change, both because of the mutual influence of the ethoxycarbonyl substituents through the conjugated porphyrin ring, and also because of steric hindrance, which we took into account in the calculations by means of the experimental data on electronic absorption spectra [1, 2]. Calculations showed that the first effect has a slight influence on the order of the bonds of the C=O groups. Thus, only two vibrational frequencies are predicted, a lower one for the C=O groups of the ethoxycarbonyl substituents not subject to steric hindrance and a higher one for the case where there is steric hindrance. The values of these frequencies are about 1695 and 1715 cm^{-1} . Deviations from these values are easily explained by the experimental error. The broad band at $1700-1709 \text{ cm}^{-1}$ apparently arises as a consequence of the superposition of the two bands mentioned. Compound V forms an exception; this should have an absorption band at about 1715 cm^{-1} .

CHEMICAL SHIFTS OF THE PROTONS OF THE METHYL GROUPS

In experiments on nuclear magnetic resonance, a nucleus with a magnetic moment gives a signal corres-

π -Electronic Charges for Porphyrins with Ethoxycarbonyl Substituents in the form of Dications	Compound	IV V	7 8	D831 0.831 0.955 0.951 0.956 0.951 0.956 0.951 0.956 0.951 0.951 0.951 0.951 0.951 0.951 0.951 0.951 0.951 0.951 0.951 0.951 0.951 0.951 0.951 0.952 0.951 0.952 0.961 0.975 0.961 0.974 0.961 0.974 0.961 0.974 0.961 0.974 0.961 0.975 0.994 0.974 0.961 0.975 0.994 0.976 0.994 0.975 0.976 0.975 0.975 0.975 0.976 0.975 0.976 0.976 0.976 0.976 0.976 0.976 0.976 0.976 0.775 0.765
		IIIc	9	0.825 1.098 0.931 0.931 0.931 0.952 0.953 0.953 0.953 0.954 0.953 0.953 0.954 0.953 0.953 0.954 1.007 </td
		AIII	s	0.826 1.097 1.097 0.962 0.962 0.962 0.974 0.974 0.997 0.997 1.097 1.097 1.097 1.097 1.097 1.987 1.699 1.987 1.9977 1.9977 1.9977 1.9977 1.9977 1.9977 1.9977 1.9977 1.9977 1.9
		IIIa	4	0.331 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.948 0.0914 0.099 0.0914 0.092 0.0914 0.092 0.0914 0.092 0.0914 0.092 0.092 0.092 0.0766 0.077 0.077 0.0914 0.077 0.0914 0.0770 0.07700 0.07700 0.07700 0.07700000000
		I	3	0.826 1.100 0.940 0.940 0.940 0.940 0.979 0.979 0.979 0.979 0.979 0.979 0.979 1.075
			2	$\begin{array}{c} 0.869\\ 1.077\\ 0.979\\ 0.928\\ 0.928\\ 0.928\\ 0.979\\ 1.012\\ 0.979\\ 0.979\\ 1.012\\ 0.979\\ 1.012\\ 1.$
		Atom No.	-	403838888888888888888888888888888888888

Table 1 π -Electronic Charges for Porphyrins with Ethoxycarbonyl Substituents in the Form of the Free Bases

Table 2

ubstituents in the Form of the Free bases		>	$\begin{array}{c} 0.860\\ 0.993\\ 0.994\\ 0.994\\ 0.944\\ 0.944\\ 0.944\\ 0.944\\ 0.944\\ 0.926\\ 0.926\\ 0.928\\ 0.926\\ 0.$
		IV	0.860 0.993 0.993 0.993 0.993 0.993 0.993 0.993 0.993 0.993 0.923 0.923 0.944 1.489 0.923 0.923 0.944 1.489 1.489 1.489 1.489 1.9488 1.948 1.948 1.9488 1.9488 1.9488 1.9488 1.9488 1.9488 1.9488 1.9488 1.9488 1.9488 1
		IIIc	$\begin{array}{c} 0.852\\ 0.955\\ 1.155\\ 0.995\\ 0.995\\ 1.142\\ 1.142\\ 1.142\\ 1.032\\ 0.967\\ 1.032\\ 0.957\\ 1.032\\ 0.953\\ 1.033\\ 0.956\\ 1.035\\ 1.035\\ 1.035\\ 1.035\\ 1.035\\ 1.035\\ 1.035\\ 1.035\\ 1.035\\ 1.035\\ 1.035\\ 1.035\\ 1.035\\ 1.035\\ 1.035\\ 1.035\\ 1.035\\ 1.025\\ 1.035\\ 1.025\\ 1.035\\ 1.025\\ 1.035\\ 1.025\\ 1.035\\ 1.025\\ 1.035\\ 1.025\\ 1.035\\ 1.025\\ 1.$
	Compound	IIIb	$\begin{array}{c} 0.352\\ 0.967\\ 1.142\\ 0.994\\ 1.142\\ 0.926\\ 1.142\\ 1.142\\ 1.035\\ 1.035\\ 1.142\\ 1.035\\ 1.142\\ 1.035\\ 1.142\\ 1.035\\ 1.142\\ 1.151\\ 1.151\\ 1.1491\\ 1.511\\ 1.511\\ 1.511\\ 1.511\\ 1.943\\ 1.926\\ 1$
		IIIa	0.860 0.978 0.993 0.993 0.993 0.993 0.995 0.934 0.955 0.925 0.025 0.005 0.025
		п	0.852 1.155 0.974 0.972 0.974 0.974 0.974 1.1411 1.1411111111
			0.906 1.1066 1.006 1.006 1.006 1.006 1.006 1.005 1.055 1
S		Atom No.	-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Table 4	ī		>	8	$\begin{array}{c} 0.5540\\ 0.5540\\ 0.5540\\ 0.5540\\ 0.5540\\ 0.5597\\ 0.5530\\ 0.5530\\ 0.5597\\ 0.5530\\ 0.5530\\ 0.5530\\ 0.5530\\ 0.5530\\ 0.5530\\ 0.5530\\ 0.5554\\ 0.2554\\$
	yl Substi		IV	7	$\begin{array}{c} 0.664\\ 0.539\\ 0.539\\ 0.5599\\ 0.5599\\ 0.5599\\ 0.5599\\ 0.5599\\ 0.5597\\ 0.5597\\ 0.5597\\ 0.5597\\ 0.5597\\ 0.5597\\ 0.5597\\ 0.5595\\ 0.2554\\ 0.2554\\ 0.2554\\ 0.2555\\ 0.2555\\ 0.2554\\ 0.2555\\ 0.$
	tions		IIIc	9	0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.5366 0.537<
	th Ethoy of Dica	punoduc	dIII	2	0.556 0.556 0.556 0.5570 0.5570 0.5570 0.5570000000000
	rrins wi e Form	Ŭ	IIIa	4	$\begin{array}{c} 0.664\\ 0.539\\ 0.5599\\ 0.5539\\ 0.5539\\ 0.5539\\ 0.5539\\ 0.5539\\ 0.5568\\ 0$
	· Porphy ats in th		μ	33	$\begin{array}{c} 0.656\\ 0.556\\ 0.$
	rder for tuei		I	2	$\begin{array}{c} 0.696\\ 0.567\\ 0.$
	Bond C	f	puog	-	227 227 227 227 227 227 227 227
					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	ti-		>	8	
	nyl Subs s		IV	7	$\begin{array}{c} 0.530\\ 0.5391\\ 0.5391\\ 0.5391\\ 0.5391\\ 0.5391\\ 0.5391\\ 0.5391\\ 0.5391\\ 0.5391\\ 0.5391\\ 0.5391\\ 0.5391\\ 0.5319\\ 0.5319\\ 0.5319\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ 0.5321\\ $
	xycarbo ree Base		IIIc	9	$\begin{array}{c} 0.538\\ 0.538\\ 0.538\\ 0.538\\ 0.538\\ 0.5598\\ 0.5598\\ 0.5598\\ 0.5598\\ 0.5598\\ 0.5598\\ 0.5598\\ 0.5598\\ 0.5598\\ 0.5598\\ 0.5598\\ 0.5598\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5238\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.5506\\ 0.55$
Table 3	vith Ethc of the F1	Compound	IIIb	5	$\begin{array}{c} 0.684\\ 0.684\\ 0.592\\ 0.592\\ 0.595\\ 0.595\\ 0.595\\ 0.595\\ 0.595\\ 0.595\\ 0.595\\ 0.595\\ 0.595\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.508\\ 0.$
	ıyrins w Form o		IIIa	4	$\begin{array}{c} 0.693\\ 0.497\\ 0.591\\ 0.591\\ 0.591\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.593\\ 0.$
	r Porph s in the		п	3	$\begin{array}{c} 0.684\\ 0.592\\ 0.592\\ 0.592\\ 0.592\\ 0.595\\ 0.595\\ 0.597\\ 0.597\\ 0.597\\ 0.597\\ 0.597\\ 0.597\\ 0.597\\ 0.597\\ 0.597\\ 0.597\\ 0.597\\ 0.597\\ 0.597\\ 0.597\\ 0.597\\ 0.597\\ 0.597\\ 0.597\\ 0.597\\ 0.597\\ 0.597\\ 0.5929\\ 0.597\\ 0.597\\ 0.5929\\ 0.597\\ 0.597\\ 0.5929\\ 0.5929\\ 0.597\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ 0.5929\\ $
	rders fo tuent:		I	2	0.528 0.528 0.528 0.528 0.528 0.528 0.528 0.529 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.535 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.552 0.550 0.552 0.550 0.552 0.550 0.552 0.550 0.552 0.550 0.552 0.550 0.552 0.550 0.550 0.550 0.550 0.552 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.550 0.5500 0.5500 0.5500 0.5500 0.5500 0.5500 0.5500 0.5500 0.5500 0.5500000000
	Bond O		Bond	-	$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$

Table 4

CHEMISTRY OF HETEROCYCLIC COMPOUNDS

739

	-		-	· .	
	$\nu_{\rm C=O}, \rm cm^{-1}$	$P_{C=O}$ (free bases) for the bonds			
Compound		29—30	3233	35—36	38-39
II IIIa IIIb IIIc IV V	1697 1715 1694 1695 1700—1709 1700—1710	0.849 0.860 0.849 0.849 0.860 0.860	0.860 0,860 0.860	0.849 0.849 0.860	0.849

# Groups and the Bond Orders of the Porphyrins

Table 5

Table 6

Chemical Shifts of the Protons of the Methyl Groups  $\delta$  and Excess  $\pi$ -Electronic Charges  $\Delta_q$ 

Compound	$\delta$ , ppm from TMS (number of protons)	$\Delta q$ on the methyl groups (dications)				
I II III a III c IV V	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				

ponding to the value of the magnetic field at the nucleus  $H = (1 - \sigma)H_0$ , where  $H_0$  is the applied field and  $\sigma$  is the screening constant. Where the molecule contains polar groups, the proton H attached to an atom X will have an additional chemical shift [8]:  $\Delta \delta = -aE_Z - bE^2$ , where  $E_Z$  is the component of the electric field E created by the polar groups in the X—H direction. In this expression, the main member is that which depends linearly on the field strength. A linear relationship between the chemical shift of a proton and the excess of  $\pi$ -electronic charge on the carbon atom to which the proton is attached has been observed for many unsaturated compounds [9–11]. We have established a similar correlation for the porphyrins I–V.

The proton resonance spectra of these compounds in the form of dications were taken on an INM-C-60 spectrometer. Trifluoroacetic acid was used as the solvent and the concentration of solute was about 15 mg/ml. Tetramethylsilane was used as internal standard.

In the spectra obtained for all the compounds, the protons of the methyl groups gave not more than two signals. One of them corresponds to methyl groups attached to pyrrole rings with a free  $\beta$ -position and the other signal appears when an exthoxycarbonyl substituent is present in the  $\beta$ -position. Since, in the calculation of these electron densities, the model of a heteroatom was used for the methyl groups, the charges on the methyl groups are compared with the experimental data.

It can be seen that (with an accuracy of  $5 \times 10^{-4}$ ) calculation gives two values of the charges on the CH₃ groups. The methyl groups with a greater positive charge (adjacent to ethoxycarbonyl groups) have a lower screening constant and, accordingly, give a signal at a smaller value of the field.

In this work, the influence of  $\pi$ -electron currents on the chemical shifts is not discussed. A quantum mechanical calculation has shown that for the series of porphyrins I–V the contribution of the  $\pi$ -electron currents to the chemical shifts of the methyl protons is constant within the limits of experimental accuracy and does not change the quantitative picture of the proton resonance spectra.

The comparison of the calculated and experimental values for the IR spectra and the PMR spectra that

has been carried out shows that the simple Hückel method correctly predicts the qualitative change in the electronic structure of the porphyrins on the introduction of different numbers of similar electronegative substituents. In conclusion, we may mention that, according to calculation, the introduction of an ethoxycarbonyl substituent into the  $\beta$ -position of 1,4,5,8tetramethylporphyrin has a relatively weak influence on the  $\pi$ -electron charges and the indices of the free valence of the unsubstituted  $\beta$ -positions. A considerable change in the electron densities takes place in the meso positions. Thus, for all the free  $\beta$ -positions the difference in reactivity determined by electron densities is far less than for the meso positions.

### REFERENCES

1. V. N. Mamaev, G. V. Ponomarev, and R. P. Evstigneeva, KhGS [Chemistry of Heterocyclic Compounds], 3, 861, 1967.

2. V. M. Mamaev, G. V. Ponomarev, and R. P. Evstigneeva, KhGS [Chemistry of Heterocyclic Compounds], 4, 265, 1968.

3. B. Pullman and A. Pullman, Quantum Biochemistry [Russian translation], Moscow, 1965.

4. C. A. Coulson and H. C. Longuet-Higgins, Proc. Roy. Soc., A 193, 447, 1948.

5. G. Berthier, B. Pullman, and J. Pontis, J. Chim. Phys., 49, 367, 1952.

6. J. Baudet, G. Berthier, and B. Pullman. J. Chim. Phys., 54, 282, 1957.

7. M. L. Josien and J. Deschamps, J. Chim. Phys., 52, 213, 1955.

8. A. D. Buckingham, Canad. J. Chem., 38, 300, 1960.

9. G. Fraenkel, R. E. Carter, A. McLachlan, and J. H. Richards, J. Am. Chem. Soc., 82, 5846, 1966.

10. H. Spiesecke and W. G. Schneider, Tetrah. Lett., 468, 1961.

11. C. Maclean, and E. L. Mackor, Mol. Phys., 4, 241, 1961.

27 September 1966 Lomonosov Moscow Institute of Precision Chemical Engineering